Wilbury Calculations Policy

Aims of the Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school.

To ensure understanding, each calculation is taught systematically through;

- concrete materials
- pictorial representations
- written methods.

The policy is set out as an indication of end of year expectations for each year group. If a child has a clear understanding of the required calculation, they then need to show they can use that skill through deeper learning/thinking through word problems/ reasoning explanations or puzzle type questions. It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems.

Addition

To add successfully, children need to be able to:

- \quad Recall all addition pairs to $9+9$ and know number bonds to and within 10/20/100
- Add mentally a series of one-digit numbers, such as $5+8+4$
- Add multiples of 10 (such as $60+70$) and 100 (such as $600+700$) using the related addition fact, e.g. $6+7$, and their knowledge of place value
- Partition two-digit and three-digit numbers into multiples of 100,10 and 1 in different
- Children should also be learning mental methods of calculation alongside the more formal written methods.

By the end of Foundation Stage

- Understand concept and vocabulary of plus, add, more total, sum and altogether. The vocabulary should be taught through practical activities in meaningful contexts up to 10 .
- Songs - 1,2,3,4,5 Once I caught a fish alive,
- Count on, altogether, one more etc.
- Matching numbers to objects
- Counting on fingers in a consistent way
- Counting forwards in 1's, 2's and 10's, up to 100, 20, 100 respectively.

- Use objects and marks to signify 1 more/2 more.
e.g. There are 3 cars in the garage. 1 more came along.

- Terry has 3 apples and Tony has 2 apples. How many apples altogether?

By the end of Year 1

Through practical activities in meaningful contexts and informal written methods

- Develop partitioning/bonds to 20 and within 20 (separate a group of objects into 2 groups)
e.g. 8 is 5 and 3 . Reinforce with Numicon.

$$
88=8 \text { and }
$$

- Use of number sentences and mathematical language - count on / altogether / one more/ two more.

- Use of number lines and 100 square within 10 (Ext. to 50).
- Relationships/related facts including symbols + and $=$ in various positions in number sentence.

By the end of Year 2

- Through practical activities, meaningful contexts and informal written methods
- Using Numicon, fluent recall of bonds to 20 and within 20

- Derive fact families up to 100
$13+7=20$
$7+13=20$ (and link to subtraction)
$20=7+13$
$20-7=13$
$20-13=7$
- Use Dienes to represent tens and ones to add digits.

- Use Numicon or other concrete materials.
3
1
- Begin to work on number bonds to 10.
- Use concrete objects to help recognise the value of coins and simple addition.

Outdoor Curriculum

- Role-playing number songs.
- Matching numbers to objects.
- Number in buckets, adding correct number of blocks/bean bags.
- Number in hoops, throwing the correct number of beanbags into hoops.
- Counting forward in 1 s through, skipping, jumping on numbers, shooting hoops etc.
- Using chalk to draw numbers or objects.
- Bowling, working out how many pins have been knocked over.

- Partitioning using Numicon e.g. 14 = $10+4$

88
 08

- Money and addition up to 50p.

- Count in 2's, 5's and 10's.
- Adding multiples of 10 .
e.g. $5+10$

$$
\begin{aligned}
& 5+20 \\
& 3+30
\end{aligned}
$$

- Adding three numbers. e.g. $2+8+4=14$

$$
1+\square+5=9
$$

- Extend to questions such as; e.g. $14+5=10+\square$

National Curriculum requirements:

Add 1 digit and 2 digit numbers to 20 , including 0 .

- Use lines and dots to represent tens and ones.

\mathbf{T}	\mathbf{O}	+	\mathbf{T}	\mathbf{O}	
3	2	+	2	1	$=53$
$\|\|\mid$..	$+\quad\| \|$			

- Constructing own lines- partitioning the smallest number
$8+7=15$

- Addition of money up to $£ 1.00$ - using coins
- Count on in 2's, 3,5's and 10's from different numbers e.g. $3,9,16$, within 100.
- Column addition - no carrying

National Curriculum requirements:

(using concrete objects, pictorial representations and mentally)
Add 2 digit numbers and ones.
Add 2 digit number and tens.
Add two 2 digit numbers.
Add three 1 digit numbers.
Ext. Add three 2 digit numbers.

By the end of Year 3

- Through practical activities, meaningful contexts and informal written methods
- Using Numicon, fluent recall of bonds to 100 and within 100

- Use Dienes to represent hundreds, tens and ones to add digits up to 1000.

- Use lines and dots to represent hundreds, tens and ones up to 1000.

\mathbf{H}	\mathbf{T}	\mathbf{O}	+	\mathbf{H}	\mathbf{T}	\mathbf{O}			
3	2	4	+	2	1	$3=537$			
	$\\|$	\ldots	+	$\\|\\|$	$\ldots=$				
	\ldots								

- Addition and subtraction of money up to $£ 20.00$ - using coins and notes.
- Count on in 2's, 3's, 4's, 5's, 8's and 10's from different numbers e.g. 3, 9, 16, within 120.

By the end of Year 4

- Carrying tens to Hundreds.
- Carrying Ones to Tens and Tens to Hundreds
- A variety of smaller and larger digits

HTO	HTO	ThHTO
1	11	11
371	376	2388
$+\frac{485}{856}$	$+\frac{485}{861}$	$\frac{1124}{3512}$

- Addition using money and decimals
$£ 3.25$
$+\begin{array}{r}£ 1.53 \\ £ 4.78\end{array}+\begin{array}{r}£ 3.21 \\ £ 8.08\end{array}$
- Addition of different values written horizontally.
$£ 1.85+48 p=$
11
£1.85
$+\underset{£ 2.33}{£ 2.48}$
- Add common denominator fractions.

$$
\begin{gathered}
1 / 4+2 / 4=3 / 4 \\
2 / 7+3 / 7=5 / 7
\end{gathered}
$$

National Curriculum requirements:

Add numbers with up to 3 digits, using the formal written method of column addition.

By the end of Year 5

- Addition using O, T, H, Th and beyond using more than two numbers (without place value headings).

$$
\begin{array}{r}
211 \\
1463 \\
+\quad 921 \\
759 \\
2143
\end{array}
$$

- Addition of decimals T, O, Tenths and hundredths.
$14.1+3.89=$

$$
\begin{array}{r}
14.10 \\
+\quad 3.89 \\
\hline 17.99
\end{array}
$$

- Solve real life word problems involving money or measures e.g.

There is 3.5 m of ribbon. Another 6.3 m is added. How much ribbon do I have altogether?

- Add different denominator fractions by finding the equivalent fraction.

$$
\begin{gathered}
1 / 8+2 / 4= \\
1 / 8+4 / 8=5 / 8
\end{gathered}
$$

National Curriculum requirements:

By the end of Year 6

- Add mixed number fractions with different denominators.

$$
\begin{gathered}
3 / 4+1 / 6= \\
9 / 12+2 / 12=11 / 12 \\
3 / 5+4 / 7= \\
21 / 35+20 / 35=41 / 35 \\
=16 / 35 \\
11 / 2+31 / 4= \\
3 / 2+13 / 4= \\
6 / 4+13 / 4=19 / 4 \\
=43 / 4
\end{gathered}
$$

- Reinforce and secure all of the above with increasing emphasis on using and applying in preparation for secondary transfer.
- Column addition with carrying up Solve problems involving addition. to 1000 (including missing digits).

Th H T O
371
$+485$
856

National Curriculum requirements:

Add numbers with up to 3 digits, using the formal written method of column addition.
Solve problems involving addition.

Add whole numbers with more than 4

 digits, using the formal written method of column addition.Solve problems involving addition.

National Curriculum requirements:
Add whole numbers with more than 4 digits, using the formal written method of column addition.
Solve problems involving addition.

Subtraction

To subtract successfully, children need to be able to:

- Recall subtraction facts to 20 and within 20.
- Subtract multiples of 10 (e.g. 160-70) using the related subtraction fact $16-7$ and their knowledge of place value.
- Partition two-digit and three-digit numbers into multiples of hundreds, tens and ones in different ways (e.g. partition 74 into $70+4$ or $60+14$).
- \quad Children should also be learning mental methods of calculation alongside the more formal written methods.

By the end of Foundation Stage

- Understand the concepts and vocabulary of difference, subtraction, less, minus and take away through practical activities in meaningful contexts within 5 and 10 .
- Sing songs such as, ' 5 little ducks went out on day, 10 in a bed, 10 fat sausages...'
- Use pegs, take one/two away. $\perp+\perp \perp$
- Counting on from a smaller number.
- Counting back through practical activities in meaningful contexts.
E.g. We made 6 cakes. We ate 2 of them. How many cakes are left?

- Link to number line $6-2=$

By the end of Year 1

- Through practical activities, meaningful contexts and informal written methods.
- Find the difference within 20 e.g. the difference between 7 and 11 using towers/ Numicon or Cuisenaire rods.
- Find the difference by counting up (only when the difference is small).
e.g. $14-12=2$

- Subtract multiples of 10 , record using - and $=$. e.g. $50-20=30$
- Relationships/related facts.

- Continued use of Numicon
e.g. $12-8=$

By the end of Year 2

- Through practical activities, meaningfu contexts and informal written methods
- Using Numicon and a number line to count back by partitioning the second number. Eg. $46-15$

$$
46-10-5
$$

- Using Numicon and a number line to count on when the number is small. Eg. 23-19

- Inverse bonds fluently to 20 and within 20

$$
\text { e.g. } 20-18=2
$$

$$
20-2=18
$$

16 minus $4=12$
16 subtract $12=4$

- Use Numicon or other concrete materials.
- The difference between 2 and 4 .

- Begin to use the inverse of number bonds to 10 .

Outdoor Curriculum

- Role-play number songs.
- Pegs on a number line, 1 less, 2 less.
- Hoops and beanbags.
- Problem solving. E.g. There are 5 tricycles, 2 are being used. How many are left?

- Consolidate inverse of number bonds to 20
e.g. $15-3=12$
$15-12=3$
- Consolidate inverse of number bonds within 20
e.g. $6+2=8$
$8-2=6$
$8-6=2$

National Curriculum requirements:

Add and subtract one digit and two digit numbers to 20 including 0 .
Represent and use number bonds and related subtraction facts.

- Use lines and dots to represent tens and ones.

$$
\begin{array}{rlllll}
\mathbf{T} & \mathbf{O} & - & \mathbf{T} & \mathbf{O} \\
3 & 2 & - & 2 & 1 & =11 \\
||\mid & & & |\mid & \\
& & & \\
& & &
\end{array}
$$

- Derive and use related facts up to 100

$$
\begin{aligned}
\text { e.g. } 10-7=3 \text { so } \\
100-70=30
\end{aligned}
$$

- Column subtraction - no exchange

National Curriculum requirements:

(using concrete objects, pictorial representations and mentally)
Subtract 2 digit numbers and ones.
Subtract 2 digit number and tens.
Subtract two 2 digit numbers.
Subtract three 1 digit numbers

By the end of Year 3

- Through practical activities, meaningful contexts and informal written methods
- Inverse bonds fluently to 100 and within 100

$$
\begin{array}{lc}
\text { e.g. } & 100-40=60 \\
& 100-60=40 \\
100 \text { minus } 40=60
\end{array}
$$

$$
100 \text { subtract } 60=40
$$

- Use Dienes to represent hundreds, tens and ones to add digits up to 1000.

- Use lines and dots to represent hundreds, tens and ones up to 1000.

\mathbf{H}	\mathbf{T}	\mathbf{O}	+	\mathbf{H}	\mathbf{T}	\mathbf{O}		
3	2	4	+	2	1	$3=111$		
	$\\|$	\ldots	-	$\\|$	\ldots			

- Derive and use related facts up to 1000.
$\begin{array}{ll}\text { e.g. } & 10-7=3 \text { so } \\ & 100-70=30 \text { so } \\ & 1000-700=300\end{array}$

By the end of Year 4

1. Adjustment to Hundreds and Tens 2. Adjustment to Hundreds and Tens to Ones
2. Adjustments to Noughts
3. Check using the inverse
4. Extension, subtract numbers up to 4 digits.

H TO	HTO	
34137	341280,2	
- 182	- 187	
255	245	
H T O	HTO	
46710	${ }_{56,1014}$	
- 142	- $\quad 347$	
328	257	
£4.35	£5.34, 5	$£_{2} 8.159$
- £1.23	- £2. 29	- £1.73
£3.12	£3. 16	£ 1.86

- Subtract common denominator fractions.

$$
\begin{aligned}
& 5 / 6-2 / 6=3 / 6 \\
& 6 / 7-3 / 7=3 / 7
\end{aligned}
$$

National Curriculum requirements:

Subtract numbers up to 4 digits using the formal written method of column subtraction.
Solve problems involving subtraction.

By the end of Year 5

- Subtraction involving O, T, H, Th and beyond including noughts and decimals (without place value headings).

- Solve real life word problems involving money or measures e.g.

I was given £3000. I spent £1 356 on theatre tickets. How much money do I have left?

- Subtract different denominator fractions by finding the equivalent fraction.

$$
\begin{gathered}
4 / 5-2 / 10= \\
8 / 10-2 / 10=6 / 10 \\
2 / 3-4 / 9= \\
6 / 9-4 / 9=2 / 9
\end{gathered}
$$

National Curriculum requirements:

By the end of Year 6

- Subtract mixed number fractions with different denominators.

$$
\begin{gathered}
3 / 4-1 / 6= \\
9 / 12-2 / 12=7 / 12
\end{gathered}
$$

$$
3 / 5-4 / 7=
$$

$$
21 / 35-20 / 35=1 / 35
$$

$$
\begin{gathered}
31 / 2-11 / 4= \\
7 / 2-5 / 4= \\
14 / 4-5 / 4=9 / 4 \\
=21 / 4
\end{gathered}
$$

- Reinforce and secure all of the above with increasing emphasis on using and applying in preparation for secondary transfer.

National Curriculum requirements:

Subtract numbers with more than 4

digits.

Solve problems involving subtraction.

- Column subtraction with carrying up to 1000 (including missing digits).

Subtract numbers with more than 4
digits.
Solve problems involving subtraction.
Th H TO
371

- $\quad 125$ 246

National Curriculum requirements:

Subtract numbers with up to 3 digits

 using the formal written method of columnar subtraction.Solve problems involving subtraction.

Multiplication

To multiply successfully, children need to be able to:

- Recall multiplication facts to 12×12.
- Partition numbers into multiples of hundreds, tens and ones.
- Work out products such as $70 \times 5,70 \times 50,700 \times 5$ or 700×50 using related fact 7×5 and their knowledge of place value.
- Add two or more single-digit numbers mentally.
- Add multiples of 10 (e.g. $60+70$) or of 100 (e.g. $600+700$) using related addition fact $6+7$ and their knowledge of place value.
- Add combinations of whole numbers using the column method.
- Children should also be learning mental methods of calculation alongside the more formal written methods.

By the end of Foundation Stage

- Understand concept and vocabulary of multiplication (double, lots of) through practical activities in meaningful contexts.
- Counting in 2's and 10's (extend to 5's).
- Double up to $5+5$.
- Double objects practically.

$+$
 $=$

Outdoor Curriculum

- Practical problems, e.g. There are 2 children and they each need 4 balls. How many balls do they need altogether?

How many wheels do 2 tricycles have?

Board games

By the end of Year 1

- Through practical activities, meaningful contexts and informal written methods.
- Doubles up to $10+10$ using Numicon and other concrete materials.
e.g.

- Count up in 2's, 5's and 10 's to 100 .
- Count back in 2's, 5's and 10's from any given number within 100.
-
- Continue to use number lines to count up and back.
e.g.

- Solve one-step problems. E.g. How many marbles altogether?

By the end of Year 2

- Through practical activities, meaningful contexts and informal written methods.
- Using Numicon, double numbers up to $20+20$ (by partitioning and recombining) E.g. $17+17$
888

77
- Understand multiplication as repeated addition/groups of/lots of.
E.g. 2×5

- Reading arrays

$$
\text { E.g. } 4 \times 2
$$

| Count multiples of coins of $2 p, 5 p$ and 10 p . |
| :--- | :--- |
| National Curriculum requirements:
 Solve one-step problems involving multiplication, by
 calculating the answer using concrete materials,
 pictorial representations and arrays with the
 support of the teacher. |

- Using a number line to show repeated addition. Eg. 4×2

$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
- Know the times tables and division facts for 2,5 and 10 (Extension $3 x$ tables).
- Understand that multiplication is commutative.

National Curriculum requirements:

Solve problems involving multiplication using materials, arrays, mental methods and multiplication facts.

By the end of Year 3

- Through practical activities, meaningful contexts and informal written methods
- Using Numicon, arrays and circles, demonstrate repeated addition for multiplication.
E.g. $3 \times 4=3+3+3+3$

- Use commutative law.

- Know the times tables and division facts for 2, 3, 45, 8 and 10 .
- Understand short multiplication through partitioning up to 2 digits by 1 digit.

$$
\begin{array}{ll}
\text { e.g. } & 35 \times 4= \\
& 30 \times 4=120 \\
5 \times 4=20 \\
& \\
& 120+20-140
\end{array}
$$

National Curriculum requirements:

Multiply 2 digits by 1 digit, using mental and progressing to formal written methods.
Solve problems involving
multiplication.

By the end of Year 4

- Know times tables and corresponding division facts up to 12×12
- Use short multiplication including carrying, noughts and missing digits.
- Extension - Long Multiplication

38	202	
X 7	x	4
266		808

National Curriculum requirements:

Multiply 2 digits by 1 digit using formal written layout. Multiply 3 digits by 1 digit using formal written layout. Solve problems involving multiplication.

By the end of Year 5

- Use long multiplication to Th and beyond.

$\begin{aligned} & 425 \\ & 1638 \end{aligned}$	202
X $\quad 7$	$\times \quad 24$
11466	808
	$\underline{4040}$
	4848
122424	
3468	$8 \square 6$
X 36	$\times 31$
20808	816
104040	$244 \square 0$
124848	25296

- multiply proper fractions and mixed numbers by whole numbers.

$$
\begin{gathered}
3 / 4 \times 4= \\
3 / 4 \times 4 / 1=12 / 4 \\
12 / 4=3 \\
\\
11 / 2 \times 3= \\
3 / 2 \times 3 / 1=9 / 2 \\
9 / 2=41 / 2
\end{gathered}
$$

National Curriculum requirements:

Multiply numbers up to 4 digits by a 1 digit number using the formal written method of short multiplication.
Multiply numbers up to 4 digits by a 2 digit number using the formal written method of long multiplication.
Multiple whole numbers and those involving decimals by $10,100,1000$. Solve problems involving multiplication.

By the end of Year 6

- Reinforce and secure all of the above with increasing emphasis on using and applying in preparation for secondary transfer.
- Multiply decimals using columns.

$\begin{aligned} & 1.3 \\ & 2.38 \end{aligned}$		2.04
X 4	x	1.6
9.52		12.24
		$\underline{20.40}$
		32.64

- multiply proper fractions and mixed numbers by proper fractions or mixed numbers.

$$
\begin{gathered}
3 / 4 \times 1 / 8= \\
6 / 8 \times 1 / 8=6 / 64 \\
6 / 64=3 / 32
\end{gathered}
$$

$11 / 2 \times 23 / 4=$ $3 / 2 \times 11 / 4=33 / 8$ $33 / 8=41 / 8$

National Curriculum requirements:

Multiply up to 4 digits by 2 digits using the formal written method of long multiplication.
Multiply numbers by $10,100,1000$ giving answers up to 3 decimal places.
Solve problems involving multiplication.

Division

To be able to divide successfully，children need to be able to：
－Recall division facts up to 12 ．
－Understand and use the vocabulary of division，e．g． $18 \div 3=6,18$ is the dividend， 3 is the divisor and 6 is the quotient．
－Partition two－digit and three0digit numbers into multiples of 100,10 and 1 in different ways．
－Recall multiplication facts of one－digit numbers and divide multiples of 10 or 100 by a single digit number using their knowledge of division facts and place value．
－Know how to find a remainder working mentally，e．g． $48 \div 5$ remainder being 3
－Understand and use division and multiplication as inverse operations．
－Children should also be learning mental methods of calculation alongside the more formal written methods．

By the end of Foundation Stage

－Understand concept and vocabulary of division （sharing，shares，equal groups， 1 whole／half） through practical activities in meaningful context．
－Sharing 6 cakes between 2 people．

－\quad Sharing a bag of sweets between 2 children－ one for you，one for me．
－Grouping objects equally．
How many pairs of socks are there in the laundrette？

10 grouped into 2 s．How many groups？

By the end of Year 1

－Through practical activities，meaningful contexts and informal written methods．
－Division as sharing／share equally． e．g．Share a bag of 15 sweets equally between 5 children using one for me，one for you．

－Introduce number sentences using the \div sign．
－Division as grouping，2＇s，5＇s and 10＇s． e．g．A bag of marbles has 12 marbles in it．How many children can have 2 marbles each？

15 children get into teams of 5 to
 play a game．How many teams are there？

的競帛

的的安帛种新新
By the end of Year 2

－Through practical activities，meaningful contexts and informal written methods
－Know by heart，half of all numbers up to 20.
－Halving multiples of 10 up to 100.
－Recognise the relationship between x and \div
－Use Numicon and hands to help with groups of E．g． $15 \div 5$

How many 5 s have been counted？

－Use number lines linking it to how many 5 s in 20？．

$$
\text { E.g. } 20 \div 5
$$

－With remainders

$$
\text { E.g. } 7 \div 2=3 \text { r } 1
$$

- Introduce halving even numbers up to 10 using multilink and counters, e.g. half of 4
- Halving a whole object.

Outdoor Curriculum

- Practical problems, e.g. There are 2 children and 6 balls. Share them equally, how many does each child get?

- Consolidate halving even numbers up to 10 and link to inverse of multiplication (extension to
20).
e.g.

Understand that 8 shared in 2 groups $=4$

$$
\text { Half of } 8 \text { is } 4
$$

$$
2 \times 4=8
$$

- Use of Numicon lines to find how many 2's, 5's and 10 's in 20.

0
10

National Curriculum requirements:

Solve one step problems involving division, by calculating the answer by using concrete objects, pictorial representations and arrays with the support of the teacher.

- Use Cuisenaire rods and number track

नान

```
I||111111111111111।11।1।
```

- Know related division facts for 2,5 and $10 \times$ tables. Record using \div and $=$ signs. ($3 x$ tables for extension)

National Curriculum requirements:

Solve problems involving division using materials, mental methods and division facts.

By the end of Year 3

- Through practical activities, meaningful contexts and informal written methods.
- Recognise the relationship between x and \div
- Use Numicon and hands to help with groups of. e.g. $32 \div 8=4$

How many 8s have been counted?

- Understand division as groups of. e.g. $12 \div 4=3$

- Introduce the bus stop method for 2 digits by 1 digit.

12
$3 \longdiv { 3 6 }$

National Curriculum requirements:

Division questions based on
multiplication tables they know.

By the end of Year 4

- Know times tables and corresponding division facts up to 12×12
- Use short division including carrying, noughts and missing digits.
- Extension - Remainders and $\mathrm{HTO} \div$ TO.

Extension

National Curriculum requirements:

Divide 2 digits by 1 digit and 3 digits by 1 digit becoming fluent with formal written method of short division with

By the end of Year 5

- Division by 2 digit numbers using short division (bus stop method).
- Division with remainders, leaving the remainder as a whole number or fraction.
- Division of decimals.

$98 \div 7=$	$432 \div 5=$
14	$86 r 2$
$7 \longdiv { 9 2 8 }$	$5 \longdiv { 4 3 3 2 }$

- Missing digits

National Curriculum requirements:

Divide 2 digits by 1 digit.
Divide 3 digits by 1 digit.
Divide 4 digits by 1 digit.

By the end of Year 6

- Division with remainders, leaving the remainder as a whole number, fraction or decimal.
- Reinforce and secure all of the above with increasing emphasis on using and applying in preparation for secondary transfer.

$$
3.4 \div 8=
$$

0.425
$8 \longdiv { 3 . 4 2 0 4 0 }$

$$
56.2 \div 12=
$$

4.683
56.8210040

- Divide proper fraction and mixed numbers by proper fraction, whole numbers and mixed numbers.

$$
\begin{gathered}
1 / 2 \div 2 / 5= \\
1 / 2 \times 5 / 2=5 / 4 \\
5 / 4=11 / 4
\end{gathered}
$$

$$
12 / 3 \div 4 / 5=
$$

$$
5 / 3 \div 4 / 5=
$$

$$
5 / 3 \times 5 / 4=25 / 12
$$

$$
25 / 12=21 / 12
$$

Divide 2 digits by 1 digit, progressing to formal written methods.
Solve problems involving division.
exact answers and progressing to remainders.
Solve problems involving division.

Children interpret the remainders appropriately for the context.
e.g. as fractions, decimals or by
rounding
$98 \div 4=98 / 4=24 \mathrm{r} 2=241 / 2=24.5$
rounded to 25
Divide whole numbers and those involving decimals by 10, 100, and 1000.

Solve problems involving division.

```
12/3\div4=
5/3\div4=
5/3\div4/1=
5/3\times1/4=5/12
```


National Curriculum requirements:

Divide numbers up to 4 digits by a 2 digit number using the formal written method of short division where appropriate.
Divide up to 4 digits by a 2 digits whole number using the formal written method of long division. Solve problems involving division.

