	Summer 1			Summer 2		
Twos	Counting in everyday contexts and during play - steps, food, construction etc. Number songs and rhymes (regular)					
Outcomes	Show 'counting like' behaviour e.g. pointing to objects and saying sounds Say some number names Take part in finger rhymes with numbers					
Nursery	Accurate counting - objects to 5 Subitising to 3 (dice, objects) Discuss maths ideas during play e.g. sharing food, resources, home corner etc. Tidy up matching resources to numbered pots (to 5) Number songs and rhymes - regularly. Use fngers to represent numbers Recognise numerals and match amounts to numerals					
Outcomes	Count 5 objects accurately with one to one correspondence Subitise amounts to 3					
Reception	Building numbers beyond 10. Counting patterns beyond 10 Adding more, taking away Subitising quantities to 5 Number bonds to 5+		Doubling Sharing and grouping Even and odd Deepening understanding Patterns and relationships			
Outcomes	Have a deep understanding of number to 10, including the composition of each number Subitise quantities to 5					
Year 1	Multiplication and Division (count in 2s, 5 s and 10 s , recognise and then add equal groups using repeated addition, make arrays, make doubles, explore division by making equal groups to show both sharing and grouping)	Fractions (recognise and then find half of an object or shape, recognise and then find half of a quantity, recognise and then find a quarter of an object or shape, find a quarter of a shape)	Geometry - Position and Direction (recognise and describe half turn, quarter turn and full turn, describe position 'front and back', 'left and right', 'above and below', use ordinal numbers) \square Write left or right to complete the sentences. The triangle is to the ___ of the arrow. The square is to the ___ of the circle. The circle is to the ___ of the square \square he gh: Tom maves 2 squart wheve s tom nom?	Place Value within 100 (count from 50-100, count in 10s to 100, partition 2-digit numbers into tens and ones, use a number line to 100 , find one more and one less within 100, compare numbers using the < and > symbols)	Money (unitising, recognise coins and notes, count groups of coins) https://www.ncetm. org.uk/features/wha t-is-unitising-and-why-is-it- important/\#:~:text= The\%20mathematica 1\%20term\%20for\%20 counting, and\%20in\% 20understanding\%20 place\%20value.	Time (before and after, days of the week, months of the year, hours-minutesseconds, tell the time to the nearest hour and then half hour)
Outcomes	Children can count forwards and backwards in 2 s , 5 and 10s. They can recognise when groups are equal and add equal groups using repeated addition and arrays. Understand doubling as two equal groups. They begin to explore division as sharing and grouping in equal amounts. Automaticity: Children know the halves and doubles of numbers to 10	Children can find and recognise half and then quarter of a shape/object, knowing that two parts need to be equal. They can find half and then quarter of an amount using division skills.	Children can use language to describe turns and position. They can also use ordinal numbers to describe position. Automaticity: Children know left and right	Children can count to 100 and can use number lines and hundred squares. They can count in multiples of ten. They can partition numbers to 100 into tens and ones and can find one more and one less now up to 100 . They can compare numbers within 100 and can use the symbols < and >. Automaticity: Children count to and within 100, forwards and back.	Children can unitise (recognise that one object can represent a number of things) in the context of money. They can recognise all the coins and notes. They can count coins by counting in 2 s , 5 s and 10 s .	Children can use language of time in familiar contexts. They know the days of the week and months of the year in sequence. They can compare seconds, minutes and hours. They can tell time on the hour or half hour. Automaticity: Children know the days of the week and months of the year.

Year 2	Fractions (Understanding parts and wholes and then equal and unequal parts, recognising and finding a half, quarter, third, finding the whole, recognising unit and non-unit fractions, recognising equivalence of a half and two quarters, recognise and find three quarters, count in fractions up to a whole)	Time (Read analogue clocks o'clock, half past, quarter past and to, count, recognise and represent time in blocks of 5 minutes past the hour, know and use the number of minutes in an hour and hours in a day)	Statistics (Make and read tally charts, complete and read tables and block diagrams, draw and interpret pictograms including where a picture represents $1,2,5$ or 10)	Geometry - Po Direction (use above, below, ri - and movemen right, left, backw describe turns u anticlockwise, d continue shape p turns)	tion and ords of position - ht, left, between up, down, rds, forwards ng clockwise and cribe and tterns with \square \dagger \square
Outcomes	Children can identify parts of a whole in different formats. They can identify equal and unequal parts. Children use the formal notation of $1 / 2,1 / 4$, $1 / 3$ and can recognise and find these fractions of shapes, objects and numbers. They can find the whole amount when given the fraction, using their knowledge that the parts must be equal and therefore the same. They recognise unit and nonunit fractions. They recognise the equivalence of $1 / 2$ and $2 / 4$. They can recognise when shapes are showing $3 / 4$ and find $3 / 4$ of amounts. They can count in these three fractions up to a whole.	Recap telling time to the hour and half hour from Year 1. Children can then read time to quarter past and to and then to each interval of 5 minutes both past and to the hour. They use the fact that there are 60 minutes in an hour to work out lengths of time longer than an hour. They know that there are 24 hours in a day. Automaticity: Children tell the time to nearest 5 minutes. Children know there are 60 minutes in an hour and 24 hours in a day.	Children learn how to represent and use 5 as tally marks to read and collect data. They can complete and read simple tables of data. They read and complete block diagrams and pictograms with one to one correspondence, moving on to reading and drawing pictograms with symbols representing 2,5 or 10 items.	Children use the position and dire movement includ can complete sh include turns. Automaticity: Ch use 'clockwise' a and know which right.	nguage of tion to describe ng turns. They e patterns that dren know and d 'anticlockwise' left and which is
Year 3	Fractions (Add and subtract fractions with the same denominator, recognise and be able to partition a whole into fraction parts, find unit and then non-unit fractions of a set of objects, solve reasoning problems using fractions of an amount) $\text { b) } \frac{3}{9}+\frac{4}{9}=\square$ $\text { c) } \frac{3}{29}+\frac{4}{29}=\square$ $\frac{3}{7}+$ \square $=\frac{7}{7}$ $\frac{3}{7}+$ \square $=1$ \square $\frac{1}{2}$ of $16=$ \square \square In a class of 32 children, seven-eighths of the class have a brother or sister. a) How many children have a brother or sister?	Money (find amounts of money counting pounds and pence, convert pence into pounds and pence and vice versa, add and subtract money, find change from whole pound amounts) Dani buys a milkshake. She pays with a $£ 5$ note. She gets $£ 3$ and 40 p change. How much does the milkshake cost?	Time (recognise Roman numerals to 12, tell the time to 5 minutes and then to the minute, read digital time, understand am and pm, use units of time - years-months-days / days-hours / minutes-seconds knowledge, find and use durations of time, solve problems involving time)	Geometry Shape (identify right angles, compare angles, use the compass to identify turns, use a ruler to draw in cm and mm accurately, know 'horizontal' ,'vertical', 'parallel', 'perpendicular', recognise and draw 2D shapes, recognise, describe and make 3D shapes)	Statistics (use a key to interpret and draw pictograms, interpret and draw bar charts, collect and represent their own data, read and complete two way tables)

Year 5	Shape (Recognise and use degrees and the language of turns. Use knowledge of angles to classify, estimate and calculate missing angles, including in shapes. Measure and draw angles up to 180° using a protractor. Identify, draw and find the perimeter of regular and irregular polygons. Identify the properties of 3D shapes.) Clossify angles a to g as ocute. obtuse, reflex or right angle.	Position and Direction (Read and plot coordinates, solve coordinate problems, translate shapes on a coordinate grid, describe translations, use coordinates in translations, find lines of symmetry in 2D shapes, reflect a shape vertically or horizontally on a grid.)	Decimals (Add and subtract decimals within and then across 1 , find complements to 1, use written method to add and subtract decimals with the same, and then with different, number of dp, choosing the most efficient method each time. Find rules and complete decimal sequences. Multiply and divide decimals by 10 , 100,1000 , and work out the missing value that a number has been multiplied or divided by.) Work out $8.4+3.42$ using: - a mental method - a number line - the column method. Which method do you think is best? \qquad $+1,000 \times \square=273$ \qquad $\div 100=2.103$	Negative Numbers (Understand negative numbers in context and in abstract, count through 0 in ones and multiples, compare and order negative numbers, find the difference between positive and negative numbers.) $\begin{aligned} & \text { }-16,-12,-8,- \text {, - }- \text { - } \\ & \vee-5,-10,-15,- \text {, } \end{aligned}$	Measure: Converting units / Volume (Convert between kg and g / km and m to solve problems, convert between I and ml , convert metric units of length, convert between metric and imperial units, solve problems using all measures including units of time. Understand and measure volume using cubes, compare and estimate volume of 3D shapes, estimate capacity.)$\begin{aligned} & >\frac{1}{10} \mathrm{~kg}=\square \mathrm{g} \\ & >7 \mathrm{~kg}+\frac{1}{4} \mathrm{~kg}=\square \quad \mathrm{g} \end{aligned}$$1,000 \mathrm{ml}$ $1,000 \mathrm{ml}$ $1,000 \mathrm{ml}$ $1,000 \mathrm{ml}$ 1 1 1 1 $4,000 \mathrm{ml}=\ldots$ l What is the volume of each 3-D shape? Each cube has a volume of $1 \mathrm{~cm}^{3}$ Each container has a capacity of 1 litre.
Outcomes	Children can use 'degrees', 'angles' 'clockwise', 'anticlockwise' to describe turns. They can use knowledge of acute, obtuse, reflex and right angles to classify angles visually or labelled with degrees, to estimate their size, and to calculate missing angles including in 2D shapes. They can use a protractor to measure and draw angles up to 180°. They can identify regular and irregular polygons and draw them. They can identify the properties of 3D shapes. Automaticity: Children recognise acute, right, obtuse and reflex angles. Children know that: $360^{\circ}=\text { full turn }$ $180^{\circ}=$ half turn/ straight line $90^{\circ}=$ quarter turn/ right angle	Children can read and plot coordinates correctly and accurately on a grid ($1^{\text {st }}$ quadrant). They can work out missing coordinates. They can translate shapes on a coordinate and squared grid, and describe translations. They can use coordinates within translations. They can find any line of symmetry in a 2D shape. They can reflect a shape on squared background or on a coordinate grid vertically or horizontally. They know the difference between translation and reflection.	Children can use their knowledge of number bonds to add and subtract decimals within 1 and then across 1. They can find complements to 1 using up to 3 dp . They can use the column method to add and subtract decimals with the same number, and then with a different number, of decimal places. They can choose the most efficient method (mental, number line, column) for calculating with decimals. They can find rules for decimal sequences and complete them. They can use place value to multiply and divide decimals by 10,100 and 1000 . They can use this understanding to find missing values.	Children know when negative numbers are used in context. They can count through 0 in different steps. They can compare and order negative numbers. They can find the difference between positive and negative numbers.	Children can convert between measures to solve problems. They can convert between litres and ml and the metric units of length. They can convert between metric and imperial units such as inches and $\mathrm{cm} /$ grams and pounds. They can solve problems involving all these measures and also units of time, using conversions as needed. They understand volume and can measure it using cubes and the language 'cubed'. They can compare and estimate volume of $3 D$ shapes using cubes. They can estimate capacity and know how this is different to volume. Automaticity: Children use their knowledge of measure equivalences (eg 1000g $=1 \mathrm{~kg}$) to convert between units of measure: kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre.

Year 6	Revision of targeted material before SATs.	Revision, consolidation and stretch of the primary maths curriculum as needed. Further development of problem solving, investigation and reasoning skills.
Outcomes	Children are SATs ready.	Children are fluent and confident in their mathematical skills and knowledge. They can problem solve and investigate in different ways. They can calculate both mentally and using written methods efficiently. They are secondary ready.

White
Rose
Maths

